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The Karplus equation, deduced in the 196@s,a convenient 40 g—
and powerful tool for determining individual torsion angles as well N
as overall molecular conformation. The familiar cosine curve 201 ®
correlating three-bond proterproton NMR coupling constant’], R X e
and ¢(H—C—C—H)2 is found in university textbook,while = . = \‘(‘x\
empirical parametrizatiofgsre employed in widely used molecular -20 - AN "\“
modeling packagesHandy variations have been developed for T
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Missing from the collection ofJ-to-torsion expressions is a well- o(F-C-C-F)

behaved curve for FC—C—F. Various authors have observed the Figure 1. The B3LYP/6-311G(d,p$Je Karplus curve for 1,2-difluoro-
lack of a3J(F,F)ip(F—C—C—F) dependence and noted an unpre- ethane il!ustrating’_\]wm and the Ramsey term contributions. Only the SD
dictable substituent effedt.A typical set of observations concerns ~ contribution sustains a classic Karplus dependence.
the fluorinated ethanes. For thgauche conformation of 1,2-
difluoroethane (DFE) Abraham and Kemp have determitied the negative segment (4Q80°) results from reinforcing FC and
to be—11 Hz and estimated theansvalue at—30 Hz24 By contrast PSO terms. Both the sign &x(total) and the dominance of PSO
fluoro substitution to give 1,1,2-trifluoroethane causes small have been anticipated by determinations of negatases->Jeg'4202t
fluctuations in*Je=gauche while drastically reducing th&Je=trans and theoretical treatmen322 Surprisingly, the range of variation
to an estimated-19 Hz. Addition of another fluorine (1,1,2,2- from O to 180 is 7—8 times larger than that for the hydrocarbon
tetrafluoroethane) is reported to reduidestrans still further to (A3Jer = |96| Hz). The predictedJrgauche (71.7, exp 71.6-
—5 Hz15 71.323) adequately represents the experimental value for liquid
In the present work we have examined the torsional profiles of 9aucheDFE (—11 Hz, exp—7.2 Hz), but thetrans value (-58.4
butane and DFE as a function &, and3J, respectively, using Hz) is twice as large as that estimated empiricathdQ Hz)14 To
density functional theory (DFT) to predict the scalar coupling evaluate whether the calculatéd-=trans is overestimated in
constants. The behavior of-FEH,—CH,—F by comparison with absolute value, we reoptimized tiv@ns conformer at the MP2-
the classical Karplus behavior of Me-GHCH,-Me can be at- (FC)/6-311G(d,p) level and recomputed the coupling constant
tributed to two effects: (1) the differential contribution of the ~contributions with the B3LYP/6-31#+G(3df,3pd) extended DFT
various Ramsey terms contributing3 and (2) the influence of ~ basis set to givéJee=trans = —65 Hz. The earlier estimateof
the fluorine nonbonding electron pairs. this value for DFE may be too positive (cf. Supporting Information).
The 33y and3Je Karplus curves were derived by constraining What is the origin of the qualitativ& differences between DFE
#(X—C—C—X) for each structure on the torsional paths to its and butane? As a partial answer to this question we have applied
indicated value followed by optimization at the B3LYP/6-311G- haturalJ-coupling analysis (NJEjto the substantial FC term along
(d,p) level of theory. TheR(total) was obtained by calculating all ~ Poth torsional pathways. Dissection®fy(FC) into localized bond
four Ramsey contributions to coupling (FC, SD, DSO, and PS0) contributions corresponds completely with prevailing views holding
at the same level, using a protocol that provides semiquantitative that the nuclear spin information is carried across the central C
predictions foRJee in various fluorinated aromatic structur$sThe bond entirely by adjacent-€H bonds. The contribution is positive
fully positive 3 tracé” matches the expectédy /¢ relationship ~ at all angles except @i(H—C—C—H) = 90° where it vanished!
qualitatively and quantitatively, reinforcing the long-standing It is noteworthy that the analysis reveals no contributions from either

assumption that the FC term dominates scalar three-bortl H  the C-C bonds or the methyl €H bonds above 0.5 Hz.

coupling:19 A similar treatment for 1,2-difluoroethane illustrates a more
The corresponding Karplus curve for DFE is depicted in Figure complex pattern. The adjacent € bonds of DFE provide &k
1 with variation of the four Ramsey contributions. Theg(total) (FC) contribution qualitatively similar to the-€H bonds of butane

for the fluorocarbon displays a sign change as theCFC—F (Figure 2). At 0 theo(C—F) value is positive£35.5 Hz), followed
dihedral angle moves from 8-37.5 Hz) to 180 (—58.4 Hz). The by a minimum at 60 (—9.3 Hz) and a large positive contribution

positive region of the curve from 0 to 4@ FC determined, while &t 180 (+146.9 Hz). The other seminal influences &lre(FC)
arise from the three fluorine lone electron pairsgltfe in-plane

*To whom correspondence should be addressed. E-mail: p-orbital (Figure 3), runs negative at all torsional angles and

?’éyrgg:)@ﬁrﬂﬁgg&hem'emory'Ed“ and contrera@df.uba.ar. qualitatively mirrors the positive €F bond curve. Quantitatively
*Universidad de Buenos Aires and CONICET, Ciudad Universitaria. however, the LRcomponent is considerably larger than the latter

9702 = J. AM. CHEM. SOC. 2002, 124, 9702—9703 10.1021/ja0269136 CCC: $22.00 © 2002 American Chemical Society



COMMUNICATIONS

150 —
-—.--

?5i g -l

2 ot e . .

I'"T“ E—‘-_"_\_t_v ’ . T—-_—_‘_‘-\_‘_‘_.

_]"5 4 --\_*%‘
150 4 ——Total a-- C-F ™~
&—LP1+LP2 —-%—-LP3 ™~
-225 e
0 30 60 50 120 150 180
8(F-C-C-F), deg

Figure 2. NJC analysis of the Fermi contact term &f for 1,2-
difluoroethane rotation from 0 to 180the total FC value and the-€F
bond and fluorine lone pair contributions are illustrated.
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Figure 3. Spin—spin coupling in 1,2-difluroethane. (a) Transmission by
electrons in the €F bonds leads to antiparallel nuclear spins &t (b)
LP3 transmission mediated by the-El bonds causes parallel nuclear spins
and—J.

for ¢(F—C—C—F) from 90 to 180 leading to an overall negative
3J-(FC) in this region. From 0 to £0the sum ofo(F—C) and LP
components furnish the initial positive segment3a<FC). In

addition to these major coupling factors, the NJC analysis suggests

that the C-H and C-C bonds and the fluorine core electrons also
contribute—15 to+10 Hz to the overall FF coupling. Thus, the
F—CH,—CH,—F system employs a number of spispin transmis-
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